
LECTURE 28 CONCAVITY AND CURVE SKETCHING

We �nish the last example from last class.

Example. On [0, 2π], �nd the critical points of g (x) = sin2 (x)− sin (x)− 1, identify the open intervals on
which f is increasing and on which f is decreasing. Determine the extrema.

Solution. The critical points satisfy

0 = g′ (x) = 2 sin (x) cos (x)− cos (x) =⇒ cos (x) (2 sin (x)− 1) = 0

which implies
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We �nd −,+,−,+,− respectively, of the signs of f ′ (x). Thus, local max at x = π
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Now, for absolute extrema, we include the endpoints,

g (0) = −1, g (2π) = −1
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The Second Dervative and Concavity

There are two ways of increasing, / or &. The di�erence here is how it curves, or whether the curve faces
down or up.

De�nition. The graph of a di�erentiable function y = f (x) is

(1) concave up/convex on an open interval I if f ′ is increasing on I.
(2) concave down on an open interval I if f ′ is decreasing on I.

If f ′′ exists, then we can use the corollary on monotone functions here.
The second dervative test for concavity.
Let f (x) be a twice-di�erentiable function on some interval I.

(1) If f ′′ > 0 on I, then the graph of f on I is concave up/convex.
(2) If f ′′ < 0 on I, then the graph of f on I is concave down.

Example. Determine the concavity of y = 3 + sin (x) on [0, 2π].

Solution. First, note that we have a trigonometric function, which is in�nitely di�erentiable. Hence, we
can use the second derivative test for concavity. We compute the 2nd derivative and �nd y′′ (x) = − sin (x) .
Now, we ask, for which x is y′′ > 0 and y′′ < 0 respectively. On the one hand,

y′′ = − sin (x) > 0 =⇒ sin (x) < 0 =⇒ π < x < 2π;

on the other hand,

y′′ = − sin (x) < 0 =⇒ sin (x) > 0 =⇒ 0 < x < π.

This means, y = 3 + sin (x) is concave up on (π, 2π) and concave down on (0, π).

Note from the previous example that at (π, 3), the concavity of y changes from concave down to concave
up as x increases past π. We learned about critical points (f ′ = 0). How about f ′′ = 0? This point physically
means that the concavity is changing.
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De�nition. A point (c, f (c)) where the graph of a function has a tangent line and the concavity changes is
a point of in�ection.

Proposition. If f is twice di�erentiable, then at the point of in�ection, we must have f ′′ = 0 or unde�ned.

Note that this statement only goes one way � it is a necessary condition for the point of in�ection, not
su�cient. When you have f ′′ = 0 at some point, it does NOT guarantee that the point is a point of
in�ection. It COULD be, but doesn't have to be. The fact that it could be means solving f ′′ = 0 is still
valuable.

Simple example to showcase the insu�ciency.

Example. f (x) = x4. Certainly, f ′′ (0) = 0. But f ′′ (x) = 12x2 is positive on both sides of x = 0, which
means there is no concavity change! Hence (0, 0) is NOT an in�ection point.

Remark. MORAL OF THE STORY: you con�rm in�ection point by looking at the left and right of the
point where f ′′ = 0. If there is a sign change of f ′′, then in�ection point is con�rmed.

Example. Consider f (x) = x5/3. It does have a �at tangent line at x = 0, namely, f ′ (x) = 5
3x

2
3 =⇒

f ′ (0) = 0. However, the second derivative f ′′ (x) = 10
9 x
− 1

3 is unde�ned at 0. This COULD make x = 0 an

in�ection point (suspect). Indeed, we �nd that f ′′ (x) = 10
9 x
−1/3 < 0 if x < 0 and f ′′ (x) = 10

9 x
−1/3 > 0 if

x > 0, which means f ′′ has a sign change past x = 0. Therefore, x = 0 is an in�ection point.

Example. Consider the particle motion governed by the position function

s (t) = 2t3 − 14t2 + 22t− 5, t ≥ 0.

The velocity is
v (t) = s′ (t) = 6t2 − 28t+ 22

where the critical points

0 = v (t) = 2
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11

3
, t = 1.

The intervals are (0, 1),
(
1, 113

)
and

(
11
3 ,∞

)
. We �nd increasing, decreasing and increasing respectively.

The acceleration is
a (t) = 12t− 28

where we check concavity changes. We �nd that t = 7
3 is the �critical turning point� in velocity, and we

check the sign of a (t) on the left and right. We �nd a < 0 for t ∈
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Theorem. (Second derivative test for local extrema)
Suppose f ′′ is continuous on an open interval containing x = c.

(1) If f ′ (c) = 0 and f ′′ (c) < 0, then f has a local maximum at x = c.
(2) If f ′ (c) = 0 and f ′′ (c) > 0, then f has a local minimum at x = c.
(3) If f ′ (c) = 0 and f ′′ (c) = 0, then the test fails. The function f may have a local maximum, a local

minimum, or neither.

Example. Sketch a graph of the function

f (x) = x4 − 4x3 + 10

using the following steps

(1) Identify the domain of f and symmetries the curve may have.
(2) Find the derivatives y′ and y′′.
(3) Find the critical points of y, if any, and identify the function's behaviour at each one.
(4) Find where the curve is increasing and where it is decreasing.
(5) Find the points of in�ection, if any occur, and determine the concavity of the curve.
(6) Identify any asymptotes that may exist.
(7) Plot key points, such as the intercepts and the points found in Steps 3�5, and sketch the curve

together with any asymptotes that exist.


