LECTURE 28 CONCAVITY AND CURVE SKETCHING

We finish the last example from last class.

Example. On [0, 2 π], find the critical points of $g(x) = \sin^2(x) - \sin(x) - 1$, identify the open intervals on which f is increasing and on which f is decreasing. Determine the extrema.

Solution. The critical points satisfy

$$
0 = g'(x) = 2\sin(x)\cos(x) - \cos(x) \implies \cos(x)(2\sin(x) - 1) = 0
$$

which implies

$$
x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{6}, \frac{5\pi}{6}.
$$

So, the intervals we form is

$$
\left(0, \frac{\pi}{6}\right), \left(\frac{\pi}{6}, \frac{\pi}{2}\right), \left(\frac{\pi}{2}, \frac{5\pi}{6}\right), \left(\frac{5\pi}{6}, \frac{3\pi}{2}\right), \left(\frac{3\pi}{2}, 2\pi\right).
$$

We find $-, +, -, +, -$ respectively, of the signs of $f'(x)$. Thus, local max at $x = \frac{\pi}{6}, \frac{3\pi}{2}$, local min at $x = \frac{\pi}{2}, \frac{5\pi}{6}$. Now, for absolute extrema, we include the endpoints,

$$
g(0) = -1, \quad g(2\pi) = -1
$$

while

$$
g\left(\frac{\pi}{6}\right) = \frac{1}{4} - \frac{1}{2} - 1 = -\frac{5}{4}, \quad g\left(\frac{\pi}{2}\right) = -1, \quad g\left(\frac{5\pi}{6}\right) = -\frac{5}{4}, \quad g\left(\frac{3\pi}{2}\right) = 1.
$$

The absolute maximum is at $g\left(\frac{3\pi}{2}\right) = 1$ and the absolute minimum is at $g\left(\frac{\pi}{6}\right) = -\frac{5}{4}$ and $g\left(\frac{5\pi}{6}\right) = -\frac{5}{4}$.

THE SECOND DERVATIVE AND CONCAVITY

There are two ways of increasing, γ or χ . The difference here is how it curves, or whether the curve faces down or up.

Definition. The graph of a differentiable function $y = f(x)$ is

- (1) concave up/convex on an open interval I if f' is increasing on I.
- (2) concave down on an open interval I if f' is decreasing on I .

If f'' exists, then we can use the corollary on monotone functions here.

The second dervative test for concavity.

Let $f(x)$ be a twice-differentiable function on some interval I.

- (1) If $f'' > 0$ on I, then the graph of f on I is **concave up/convex**.
- (2) If $f'' < 0$ on I, then the graph of f on I is **concave down**.

Example. Determine the concavity of $y = 3 + \sin(x)$ on $[0, 2\pi]$.

Solution. First, note that we have a trigonometric function, which is infinitely differentiable. Hence, we can use the second derivative test for concavity. We compute the 2nd derivative and find $y''(x) = -\sin(x)$. Now, we ask, for which x is $y'' > 0$ and $y'' < 0$ respectively. On the one hand,

$$
y'' = -\sin(x) > 0 \implies \sin(x) < 0 \implies \pi < x < 2\pi;
$$

on the other hand,

$$
y'' = -\sin(x) < 0 \implies \sin(x) > 0 \implies 0 < x < \pi.
$$

This means, $y = 3 + \sin(x)$ is concave up on $(\pi, 2\pi)$ and concave down on $(0, \pi)$.

Note from the previous example that at $(\pi, 3)$, the concavity of y changes from concave down to concave up as x increases past π . We learned about critical points $(f' = 0)$. How about $f'' = 0$? This point physically means that the concavity is changing.

Definition. A point $(c, f(c))$ where the graph of a function has a tangent line and the concavity changes is a point of inflection.

Proposition. If f is twice differentiable, then at the point of inflection, we must have $f'' = 0$ or undefined.

Note that this statement only goes one way $-$ it is a necessary condition for the point of inflection, not sufficient. When you have $f'' = 0$ at some point, it does **NOT** guarantee that the point is a point of inflection. It COULD be, but doesn't have to be. The fact that it could be means solving $f'' = 0$ is still valuable.

Simple example to showcase the insufficiency.

Example. $f(x) = x^4$. Certainly, $f''(0) = 0$. But $f''(x) = 12x^2$ is positive on both sides of $x = 0$, which means there is no concavity change! Hence $(0,0)$ is NOT an inflection point.

Remark. MORAL OF THE STORY: you confirm inflection point by looking at the left and right of the point where $f'' = 0$. If there is a sign change of f'' , then inflection point is confirmed.

Example. Consider $f(x) = x^{5/3}$. It does have a flat tangent line at $x = 0$, namely, $f'(x) = \frac{5}{3}x^{\frac{2}{3}} \implies$ $f'(0) = 0$. However, the second derivative $f''(x) = \frac{10}{9}x^{-\frac{1}{3}}$ is undefined at 0. This COULD make $x = 0$ and inflection point (suspect). Indeed, we find that $f''(x) = \frac{10}{9}x^{-1/3} < 0$ if $x < 0$ and $f''(x) = \frac{10}{9}x^{-1/3} > 0$ if $x > 0$, which means f'' has a sign change past $x = 0$. Therefore, $x = 0$ is an inflection point.

Example. Consider the particle motion governed by the position function

$$
s(t) = 2t^3 - 14t^2 + 22t - 5, \quad t \ge 0.
$$

The velocity is

$$
v(t) = s'(t) = 6t^2 - 28t + 22
$$

where the critical points

$$
0 = v(t) = 2(3t2 - 14t + 11) = 2(3t - 11)(t - 1) \implies t = \frac{11}{3}, \quad t = 1.
$$

The intervals are $(0, 1)$, $(1, \frac{11}{3})$ and $(\frac{11}{3}, \infty)$. We find increasing, decreasing and increasing respectively. The acceleration is

$$
a(t) = 12t - 28
$$

where we check concavity changes. We find that $t = \frac{7}{3}$ is the "critical turning point" in velocity, and we check the sign of $a(t)$ on the left and right. We find $a < 0$ for $t \in (0, \frac{7}{3})$ and $a > 0$ for $t \in (\frac{7}{3}, \infty)$. The graph of s then is concave up on $(0, \frac{7}{3})$ and concave down on $(\frac{7}{3}, \infty)$.

Theorem. (Second derivative test for local extrema)

Suppose f'' is continuous on an open interval containing $x = c$.

- (1) If $f'(c) = 0$ and $f''(c) < 0$, then f has a local maximum at $x = c$.
- (2) If $f'(c) = 0$ and $f''(c) > 0$, then f has a local minimum at $x = c$.
- (3) If $f'(c) = 0$ and $f''(c) = 0$, then the test fails. The function f may have a local maximum, a local minimum, or neither.

Example. Sketch a graph of the function

$$
f(x) = x^4 - 4x^3 + 10
$$

using the following steps

- (1) Identify the domain of f and symmetries the curve may have.
- (2) Find the derivatives y' and y'' .
- (3) Find the critical points of y , if any, and identify the function's behaviour at each one.
- (4) Find where the curve is increasing and where it is decreasing.
- (5) Find the points of inflection, if any occur, and determine the concavity of the curve.
- (6) Identify any asymptotes that may exist.
- (7) Plot key points, such as the intercepts and the points found in Steps 3–5, and sketch the curve together with any asymptotes that exist.